Chem. Ber. 117, 1222-1234 (1984)

Beiträge zur Chemie des Bors, 135¹⁾

Additionsverbindungen von 1,3,2-Diazaborolidinen mit Aluminium- und Galliumhalogeniden

Klaus Anton, Christine Euringer und Heinrich Nöth*

Institut für Anorganische Chemie der Universität München, Meiserstr. 1, D-8000 München 2

Eingegangen am 6. Juni 1983

Die 1,3-Dimethyl-1,3,2-diazaborolidine 3-6 addieren Aluminium- oder Galliumhalogenide im Molverhältnis 1:1 zu Koordinationsverbindungen 3a - e, 4a, 5a, b, 6a, in denen der Ligand einzähnig ist. Die Anlagerung erfolgt unabhängig vom *B*-Substituenten an einem Ringstickstoff-Atom. Folge dieser Koordination ist die Ausbildung einer langen BN-Bindung zum chiralen tetrakoordinierten Ring-Stickstoff, eine erhebliche Verkürzung der BN-Bindung zum dreifach koordinierten endocyclischen Stickstoffatom und der Übergang des nahezu planaren Fünfrings in die "envelope"-Konformation, wie die Röntgenstrukturanalyse von 5a belegt. Im Gegensatz dazu liefert das 2-(Dimethylamino)diazaborolidin 7 mit AlX₃ und GaX₃ instabile 1:1- und stabile 1:2-Addukte 8. In diesen ist die Lewis-Säure nur an den Ringstickstoff-Atomen koordiniert.

Contributions to the Chemistry of Boron, 1351)

Addition Compounds of 1,3,2-Diazaborolidines with Aluminium and Gallium Halides

1,3-Dimethyl-1,3,2-diazaborolidines 3-6 add aluminium and gallium halides, respectively, in a 1:1 molar ratio. The ligand is monodentate in these coordination compounds (3a-e, 4a, 5a, b, 6a). Addition occurs at one of the ring nitrogen atoms irrespective of the *B*-substituent. A consequence of this coordination is a long BN bond to the chiral tetracoordinated nitrogen atom as well as a considerable shortening of the BN bond involving the tricoordinate ring nitrogen. In addition, the almost planar five-membered ring adopts the envelope conformation as shown by an X-ray structure analysis of 5a. In contrast, the 2-(dimethylamino)diazaborolidine 7 yields unstable 1:1 besides stable 1:2 adducts 8. In these the Lewis acid is also coordinated to the ring nitrogen atoms only.

(Dimethylamino)borane der Reihe $R_n B[N(CH_3)_2]_{3-n}$ (n = 1,2) addieren die Chloride und Bromide des Aluminiums und Galliums im Molverhältnis 1:1 zu einfachen Koordinationsverbindungen¹). Im Gegensatz dazu entstehen bei der Einwirkung dieser Lewis-Säuren auf Bis(dialkylamino)borchloride und -bromide Salze, nämlich Bis(dialkylamino)boronium(1 +)-tetrahalometallate mit einem Allen-analogen Kation $1^{2,3}$. Diese unterschiedliche Reaktivität veranlaßte uns, analoge Umsetzungen mit cyclischen Bis(amino)boranen zu studieren. Dabei erwarteten wir wegen der geringeren Flexibilität des cyclischen Systems und der im Vergleich mit 1 geringeren elektronischen Stabilisierung eines Kations 2 eine verminderte Tendenz zur Salzbildung.

Darstellung

Die Lewis-Säuren AlCl₃, AlBr₃, AlI₃, GaCl₃ sowie GaBr₃ lagern sich bereits bei -78 °C an die 1,3-Dimethyl-1,3,2-diazaborolidine 3-7 gemäß (1) zu meist kristallinen Addukten im Molverhältnis 1:1 an⁴⁾. Lediglich das 2-Dimethylamino-Derivat 7 reagiert mit 2 mol EX₃ unter Bildung von 8a-d nach (2). In keinem der untersuchten Fälle kommt es bei Raumtemperatur zur BN-Spaltung¹⁾.

Das Angebot eines EX_3 -Überschusses an gebildetes **3a** bzw. **3c** führt zu keiner wesentlichen Veränderung der NMR-Spektren. So erfährt z. B. das ¹¹B-NMR-Signal keine Tieffeldverschiebung, die bei Inanspruchnahme eines weiteren Ring-N-Atoms in einer koordinativen Bindung zu erwarten wäre¹¹. Aus den Addukten verdrängt Pyridin als stärkere Base das Diazaborolidin.

Die hydrolyseempfindlichen Addukte 3a-8d schmelzen relativ niedrig. Sie lösen sich gut in polaren, nicht protonenaktiven Solventien und sind im Kühlschrank ohne Zersetzung viele Wochen lagerfähig.

Spektroskopische Untersuchungen

Wie bei den EX_3 -Addukten der (Dimethylamino)borane¹⁾ erlaubt die NMR-Spektroskopie auch bei den hier beschriebenen Verbindungen eine eindeutige Konstitutionszuordnung. Sieht man von ionischen Alternativen mit einem Kation 2 ab, dann

Tab. 1. NMR-Daten der EX₃-Addukte von 1,3,2-Diazaborolidinen. Standards: i-TMS für δ^{1} H, δ^{13} C; e-BF₃·OEt₂ für δ^{11} B, gesätt. NaNO₃-Lösung für δ^{14} N; 1 M Al(OH₂) $_{6}^{3+}$ für δ^{27} Al; positives Vorzeichen für Signale bei höherer als der Standardfrequenz. Die sich von 3, 5, 6 und 7 ableitenden Addukte wurden in C₆D₆, jene von 4 in CD₂Cl₂ gemessen

								CIIg								
	¥	E	x	11 ₈	14 _N	27 _{A1}	сн ₂ 4	сн ₂ 5	сн ₃ 6	сн ₃ 7	сн ₃ 8	c ⁴	c ⁵	c6	۲ כ	c ⁸
3	СН3	_		32.6	-317	-	2.96	2.96	2.53	2.53	0.16	51.6	51.6	33.8	33.8	-2.0
<u>3 a</u>	снз	Ga	C 1	37.6	-330 ¹⁾ -273 ³⁾	-	2.42 ^a 3.00 ^b	3.57 ⁸ 2.13 ^b	2.21	2.21	0.30	49.9	54.2	40.2	33.0	•)
<u>3b</u>	снз	Ga	Br	37.8	-331 ¹⁾ -279 ³⁾	-	2.13 -	3.26 ^a 2.79 ^{ab}	2.32	2.32	0.39	50.2	54.2	40.6	32.8	•)
<u>3c</u>	снз	Al	C 1	38.3	-337 ¹⁾ -274 ³⁾	109.5	2.51 <mark>a</mark> 2.84 ^b	3.49 ⁸ 3.91b	2.21	2.21	0.32	49.9	53.6	39.8	33.8	-4.0
<u>3 d</u>	снз	AI	Br	37.5	-	101.9 80.1	2.84 -	3.55 ^a 2.51 ^{ab}	2.29	2.29	0.33	49.9	53.9	40.1	35.1	•)
<u>3e</u>	снз	Al	I	38.1	-292 ¹⁾ -257 ³⁾	53.1 -26.4	2.70 ^a 2.70 ^b	3.75 ^a 1.75 ^b	2.06	1.97	0.42	50.4	54.4	41.4	34.8	•)
4	C6H5	-	-	32.5	-	-	3.17	3.17	2.59	.2.59	+)	52.0	52.0	34.2	34.2	134.4**)
<u>4 a</u>	C ₆ H ₅	Ga	Cl	36.5	-	-	3.45 ^a 3.65 ^b	4.22 ^a 3.28 ^b	2.85	2.91	++)	50.8	56.1	41.7	34.4	•)
5	C1	-	-	26.7	-321	-	2.87	2.87	2.47	2.47	-	50.2	50.2	32.9	32.9	-
<u>5a</u>	¹⁾ C1	Ga	C 1	31.6	-330 ¹) -264 ³)	-	2.44 ^a 3.06 ^b	3.54 ^a 1.98 ^b	2.26	2.32	-	48.8	54.0	40.4	32.6	-
<u>5b</u>	C1	Al	Br	31.7	-	106.2 102.8 81.4	2.30 ^a 2.85 ^b	3.72 ⁸ 2 09 ⁶	2.15	2 .29	-	48.9	54.3	41.5	32.6	-
6	Br	-	-	26.1	-315	-	2.80	2.80	2.46	2.46	-	51.0	51.0	33.8	33.8	-
<u>6 a</u> *	•••) Br	A1	Br	31.1	-328 ¹⁾ -257 ³⁾	102.7	3.46 ^a 3.00 ^b	4.30 ^a 3.26 ^b	2.96	2.89	-	50.6	55.4	42.7	34.5	-
1	(CH ₃) ₂ N	-	-	27.1	-341 ¹ ,3 -367 ⁸	3) _	2.99	2.99	2.58	2.58	2.64	52.5	52.5	35.5	35,5	39,4 37,4+++)
<u>7 b</u>	(CH ₃) ₂ N	Ga	Br	27.9	- 344	-	2.88 ⁸ 2.88 ^b	3.68 ⁸ 2.14 ^b	2.25	2.14	2.36	49.0	57.6	42.2	34.1	39.3
<u>8a</u>	(CH ₃) ₂ N	Ga	CI	31.8	-		2.50 ^a 3.47 ^b	3.47ª 2.50 ^b	2.32	2.32	2.29	55.2	55.2	41.7	41.7	40.2
80	(CH ₃) ₂ N	Ga	Br	32.1	-	-	2.54 ^a 3.52 ^b	3.52 ^a 2.54 ^b	2.33	2.33	2.29	55.6	55.6	41.9	41.9	40.7
8c	(CH3)2 ^N	A 1	Cl	32.1	-	109.2	2.53 ^a 3.56 ^b	3.56 ⁸ 2.53 ⁰	2.34	2.34	2.30	55.8	55.8	42.3	42.3	40.7
8 d	(CH ₃)2 [№]	Al	Br	31.9	-350 ^{1,3} -320 ⁸⁾	102.0	2.59 ^a 3.72 ^b	3.72 a 2.59 ^b	2.41	2.41	2.33	56.5	56.5	43.4	43.4	41.2

*) Nicht beobachtet. – **) Borgebundenes C der Phenylgruppe. – ***) In $[D_8]$ Toluol bei – 30°C. – ****) In C_2D_5Br bei – 30°C. – +) Multiplett bei 7.26. – +) 7.64 – 7.51 Multiplett. – + + +) Räumlich EX₃ nahestehendes C-Atom. Bei **8a** – d bezieht sich die Zuordnung auf die *trans*-Konfiguration. Linienbreiten siehe *K. Anton*, Dissertation, Univ. München 1982.

muß man mindestens die Isomeren I – IV als mögliche Produkte der 1:1-Stöchiometrie diskutieren. Im Falle der *B*-Dimethylamino-Verbindungen 7a - c kommt V hinzu.

¹¹B-, ¹⁴N- und ²⁷Al-NMR-Daten (vgl. Tab. 1) schließen sofort die Vorschläge III und IV aus: III, weil das ¹¹B-NMR-Signal keinem tetrakoordinierten Bor entspricht, IV, da δ^{27} Al typisch für tetrakoordiniertes Al ist und außerdem zwei ¹⁴N-NMR-Signale, je eines für drei- und vierfach koordinierten Stickstoff, beobachtet werden.

Alle NMR-Daten stehen jedoch mit dem Konstitutionsvorschlag I in Übereinstimmung; ein eventueller Substituentenaustausch zu II unterbleibt bei den Addukten mit $Y = CH_3$ bzw. C_6H_5 . Im Falle von Y = Cl und X = Br in **5b** tauschen die Halogenatome bei Raumtemperatur langsam aus, wie im ²⁷Al-NMR-Spektrum zu verfolgen ist. Alle δ -Werte belegen außerdem, daß der Grenzstruktur **VI** ein erhebliches Gewicht beizumessen ist. Die Abschirmung des ¹⁴N-Kerns des dreifach koordinierten Stickstoffs entspricht dem eines Monoaminoborans. Ferner beobachtet man in allen Fällen ein zweites ¹⁴N-NMR-Signal, das im Vergleich zur Ausgangsbase zu höherem Feld verschoben und dem tetrakoordinierten Stickstoff zuzuordnen ist. Die $\delta^{11}B$ - und $\delta^{14}N$ -Werte schließen sich in Verschiebungsrichtung und Betrag den EX₃-Addukten von RB[N(CH₃)₂]₂·EX₃ an ¹).

Abb. 1. ¹H-NMR-Spektrum von **5a** im CH₂-Bereich (Numerierung der H-Atome s. Abb. 3) Chem. Ber. 117 (1984)

Im Gegensatz zu diesen Addukten erzeugt die EX₃-Addition an ein Ring-N-Atom der Diazaborolidine 3-7 ein chirales Zentrum. Auch aus diesem Grund ist verständlich, daß die ¹H-NMR-Spektren der Addukte 3a - 7c im Bereich der CH₂-Protonen komplex werden. Ihre in der Ausgangsbase aufgrund der Struktur gegebene magnetische Äquivalenz wird durch die Addition aufgehoben: es resultieren für jedes der nun vier unterschiedlichen H-Atome der beiden Methylengruppen wegen H-H-Kopplungen relativ komplexe Multipletts. Die Daten der Tab. 1 beziehen sich dabei auf das jeweils intensivste Signal. Ein Signal liegt im Vergleich mit dem der freien Base besonders weit tieffeld. Wir ordnen es dem H5a-Atom zu, das räumlich der EX₃-Gruppe benachbart ist und daher in besonderem Maße dem paramagnetischen Einfluß dieser Gruppe unterliegt. Die weitere Zuordnung lehnt sich an eine ausführlichere Analyse des ¹H-NMR-Spektrums von **5a** an. Abb. 1 zeigt den Ausschnitt im Bereich der CH₂-Protonen.

Das Multiplett bei 825 Hz des Spektrums vom ABCM-Typ wird H5a zugeordnet. Die einzelnen Kopplungskonstanten betragen 7.17, 11.37 und 1.75 Hz. Geht man von der Annahme aus, daß die Kopplung mit *trans*-ständigen vicinalen Protonen größer ist als die mit *cis*-ständigen, so ist die Kopplung mit 1.75 Hz ${}^{3}J(H5a, H4a)$ zuzuordnen. Diese Kopplungskonstante enthält die Signalgruppe um 670 Hz, die daher H4a zukommt. Andererseits kann man der Signalgruppe bei 630 Hz die Kopplung mit 11.37 Hz entnehmen, die nach unserer Voraussetzung somit von ${}^{2}J(H5a, H5b)$ herrühren muß. Somit folgt, daß Kopplungen mit 7.17 Hz mit H4b verknüpft sind. Diese Kopplung findet man in der Signalgruppe um 717 Hz. Sie ist damit ${}^{3}J(H5a, H4b)$ zuzuordnen. Im exp. Teil sind auch die restlichen drei Kopplungskonstanten sowie die berechneten angegeben ^{5,6)}.

Die Newman-Projektion in Abb. 2 zeigt die erhebliche Abweichung des Diazaborolidin-Systems in den Additionsverbindungen von der ehemaligen Planarität, wie sie auch bei dem Diazaphospholidin-System bekannt ist⁷⁾. Die Zuordnungen wurden durch selektive ¹H{¹H}-Homoentkopplungsexperimente abgesichert. In Einklang mit Konstitution I stehen auch die ¹³C-NMR-Spektren, wobei die dem tetrakoordinierten Stickstoff benachbarten Kohlenstoffe erwartungsgemäß am stärksten beeinflußt werden.

Abb. 2. Newman-Projektion längs der C-C-Bindung von 5a

Die in den IR-Spektren beobachtbaren Bandenverschiebungen bei der Anlagerung von EX₃ an die Diazaborolidine sind ebenfalls mit dem Strukturvorschlag I vereinbar. So liegt in 3a - c vBN bei 1576/1549 cm⁻¹ im Vergleich zu vBN₂ der freien Base um 80 cm⁻¹ bei größeren Wellenzahlen. Dies entspricht einer Erhöhung der BN-Bindungsordnung, die durch VI beschrieben wird. Ihre GaN- und AlN-Valenzschwingungen liegen mit 412–453 cm⁻¹ und 424–461 cm⁻¹ im "charakteristischen" Bereich^{1,8,9}. Die den GaCl₃-, AlCl₃-, AlBr₃- und AlI₃-Valenzschwingungen^{9–11} zuzuordnenden Banden (vgl. Tab. 2) entsprechen im Vergleich mit Literaturdaten jeweils tetrakoordinierten Zentralatomen, wie auch von δ^{27} Al der AlX₃-Addukte gefordert wird.

Die Verbindungen vom Typ 7a - c zersetzen sich bei Raumtemperatur in Lösung leicht. Lediglich 7b, das GaBr₃-Addukt, ermöglichte eine NMR-spektroskopische Vermessung (vgl. Tab. 1). Die ¹H-NMR-Signale der CH₂-Gruppen zeichnen sich durch drei

	v(¹⁰ / ¹¹ BN)	v(EN)	$v_{as}(EX_3)$	v _s (EX ₃)
3	1498			
3 a	1577, 1550	423	392	361
3 b	1577, 1547	412	292	268
3c	1575, 1548	461	528	386
3 d	1575, 1553	443	426	338
3e	1577, 1548	424	360	330
4	1502, 1493	-	-	-
4a	1570, 1542	412	390, 384	357
5	1526, 1496	_	-	-
5a	1576, 1551	418	394	355
5 b	1580, 1565	405	470, 450	335
		425		
		438		
6	1528, 1495	_	-	-
6a	1559, 1543	434	450	335
7	1540, 1523	-	-	_
7ь	1594, 1560	453	290	242
8a	1624, 1591, 1565	430	402	355
8b	1623, 1590, 1552	429	289	244
8c	1623, 1585, 1561	448	530	406
8d	1626, 1592, 1564	452	435	415

Tab. 2. Ausgewählte IR-Banden der Addukte **3a-8d** (Diese Banden sind mittelstark bis sehr stark)

Gruppen breiter Signale aus. Charakteristisch sind drei ebenfalls relativ breite Signale für die CH₃-Gruppen im Intensitätsverhältnis 2:1:1. Sie legen damit die Konstitution I für 7b nahe. Bestätigt wird diese Zuordnung durch das ¹³C-NMR-Spektrum, wie insgesamt 6 ¹³C-NMR-Signale belegen. Insbesondere die beachtliche Tieffeldverschiebung für C5 ist typisch für die Konstitution I.

Die Addition von GaBr₃ an die Dimethylamino-Gruppe ließe bei freier Rotation um die exocyclische BN-Achse hingegen magnetische Äquivalenz der Ring-CH₃-Gruppen und der Dimethylamino-Gruppe erwarten, d.h. es sollten hierfür nur zwei Signale auftreten sowie ein Signal für die CH₂-Gruppen. Im ¹³C-NMR-Spektrum sollten dann 3 Signale resultieren, es sei denn, daß die Rotation um die BN-Bindung behindert ist. Aber selbst dann wäre die beachtliche Tieffeldverschiebung eines C-Signals nicht erklärbar.

Der geringe Abschirmungsverlust des Bors in 7b relativ zu 7 und die entsprechenden δ^{11} B-Werte der übrigen 1:1-Addukte der Diazaborolidine lehren, daß die beiden nicht in einer koordinativen Bindung beanspruchten N-Atome das Bor effektiv elektronisch absättigen können. Und obwohl in 7b drei chemisch und magnetisch verschiedene N-Atome vorliegen müssen, findet man nur ein einziges ¹⁴N-NMR-Signal. Der Grund dafür ist einsichtig: der tetrakoordinierte Stickstoff führt zu einem Signal um 344 ppm; durch stärkere Beanspruchung des N-Atoms der Dimethylamino-Gruppe in einer π -Bindung erfolgt eine Tieffeldverschiebung. So kommt es hier, unter Berücksichtigung der erheblichen Signalbreite, zu einer zufälligen Überlappung von drei Resonanzsignalen.

Problemlos zuzuordnen sind die NMR-Signale der 1:2-Addukte **8a** – d. Bereits die einfachen ¹H- und ¹³C-NMR-Spektren belegen hohe Symmetrie, d.h. die Addition der EX₃-Verbindungen erfolgt an den Ring-N-Atomen, wobei zwei chirale Zentren erzeugt werden. Wir nehmen an, daß sich aus sterischen Gründen die EX₃-Moleküle in *trans*-Stellung zueinander befinden. Zwei ¹⁴N-NMR-Signale im Intensitätsverhältnis 1:2 stützen weiter die getroffene Zuordnung; dabei wandert durch die Addition der Lewis-Säuren das ¹⁴N-NMR-Signal der Dimethylamino-Gruppe von – 367 nach – 320 ppm, typisch für eine sehr starke Zunahme der BN- π -Bindung. Hieraus kann man schließen, daß die Dimethylamino-Gruppe koplanar (oder weitgehend koplanar) zur N₃B-Ebene steht; dies ist in den Addukten im Gegensatz zu der Ausgangsbase möglich, da sich die Methylgruppen der (CH₃)₂N-Gruppe auf Lücke zu CH₃ und EX₃ an den Atomen N1 und N3 stellen können.

Diese Vorstellung findet eine Stütze in den IR-Spektren. So wird die BN-Schwingung um ca. 100 cm⁻¹ zu höheren Wellenzahlen verschoben (Tab. 2); dies entspricht einer Zunahme der BN-Bindungsordnung zur Dimethylamino-Gruppe. Eine weitere Bande im Bereich um 1625 cm⁻¹ mittlerer Intensität bei den 1:2-Addukten könnte auf eine "out-of-phase"-Schwingung zurückzuführen sein, da ein analoges Phänomen bei 1:2-Addukten des 1,4-Diazabicyclo[2.2.2]octans mit Borhalogeniden beobachtet wurde¹²⁾.

Röntgenstrukturanalyse von 5a

Obgleich die spektroskopischen Daten der Addukte ihre Konstitution belegen, sollte eine Röntgenstrukturanalyse zu einer genaueren Information über die mit der EX_3 -Addition verbundene Veränderung der Bindungsverhältnisse des Diazaborolidin-Ringes führen. Kristalle von **5a** sind monoklin. In der Elementarzelle der Raumgruppe $P2_1/c$ befinden sich vier Moleküle, d.h. die asymmetrische Einheit enthält 1 Molekül; somit liegt nur ein optisches Isomeres vor, d.h. **5a** kristallisiert aus Toluollösung bei -10 °C nicht als Racemat, sondern die Kristalle enthalten je eines der beiden Enantiomeren.

Abb. 3. ORTEP-Plot eines 5a-Moleküls, Blick (fast) senkrecht zur Ga – N-Bindung

Tab. 3 enthält ausgewählte Bindungslängen und -winkel. Abb. 3 zeigt die Molekülstruktur. Sie entspricht der aus den spektroskopischen Untersuchungen abgeleiteten

	11141		
Ga-Cl1	214.9(1)	B-C14	173.6(4)
Ga-C12	214.9(1)	N1-C5	151.7(5)
Ga-C13	215.6(1)	N1-C6	149.9(6)
Ga-N1	201.8(3),	C5-C4	150.0(7)
8 - N 1	151.1(5)	N 3-C 4	144.6(5)
B - N 3	135.6(6)	N 3-C 7	145.6(7)
Cll-Ga-Cl2 .	112.9(1)	B-N1-C6	114.5(3)
C11-Ga-C13	112.5(1)	C5-N1-C6	112.1(3)
C12-Ga-C13	111.6(1)	8-N 3-C 4	110.6(3)
N 1-Ga-Cl 1	104.8(1)	8~N 3-C 7	129.7(4)
N 1-Ga-C} 2	106.5(1)	C4-N 3-C7	119.5(4)
N 1-Ga-C 1 3	107.9(1)	N 1-B-N 3	110.9(3)
Ga – N 1 – B	110.6(2)	N1-B-C14	122.5(3)
Ga-N1-C5	110.9(2)	N3-B-C14	126.5(3)
Ga-N1-C6	107.2(2)	C5-C4-N3	104.9(3)
B-N1-C5	101.5(3)	C4-C5-N1	105.8(3)

Tab. 3. Ausgewählte Bindungslängen (in pm) und -winkel (in °), Standardabweichungen in Klammern

Konstitution. Die GaCl-Bindungslängen betragen durchschnittlich 215.1(1) pm, ein Wert, der dem im GaCl₃-Addukt des Hexamethylborazins (215.3(2)¹³⁾) gefundenen gleicht. Er liegt damit nahe dem GaCl-Abstand, der für das Tetrachlorogallat (215.7(6) – 216.6(2)) bestimmt wurde^{14,15)}. Die im Vergleich mit dem Hexamethylborazin-Addukt (206.4(4) pm) deutlich kürzere GaN-Bindung (201.8(3) pm) in **5a** spricht für eine ausgeprägte N-Basizität des Diazaborolidins **5**. Dies wird noch deutlicher, wenn man den mit 197.0(9) pm sehr kurzen GaN-Abstand in H₃GaN(CH₃)₃¹⁶⁾ mit in die Diskussion einbezieht, obgleich hier am Galliumatom Wasserstoff- und nicht Chlor-Atome gebunden sind. Typisch ist ferner, daß die ClGaN-Bindungswinkel kleiner, alle ClGaCl-Bindungswinkel größer als der ideale Tetraederwinkel sind. Wir führen dies auf Abstoßungseffekte zwischen den gleichsinnig polarisierten Cl-Atomen zurück.

Erwartungsgemäß unterscheiden sich im Addukt **5a** die beiden BN-Abstände. Im Vergleich mit durch Elektronenbeugung ermittelten Moleküldaten von **5** (BN: 141.3(5) pm¹⁷⁾) verlängert sich in **5a** die Bindung zum tetrakoordinierten Stickstoff um 9.8 pm, während sich die Bindung zum trikoordinierten um 5.7 pm verkürzt. Diese Bindung ist damit die kürzeste, die für eine BN-Bindung mit jeweils sp²-hydridisierten B- und N-Atomen beobachtet wurde¹⁸⁾. Damit ist ihr eine hohe BN- π -Bindungsordnung, wie sie **VI** repräsentiert, zuzusprechen. Sie unterschreitet beispielsweise die mit 137.9(6) pm für (CH₃)₂N – BCl₂ ermittelte¹⁹⁾ um weitere 2.3 pm. Im Vergleich mit

anderen ClB-Abständen ist der in **5a** mit 173.6(4) pm bestimmte ClB-Abstand erstaunlich kurz¹⁹⁻²¹⁾, kürzer als in **5** (177.0(4) pm¹⁷⁾), insbesondere wenn man sich auf den sog. BCl-Einfachbindungsabstand mit 187 pm²²⁾ bezieht. Man muß folglich auch für die BCl-Bindung einen gewissen π -Bindungsgrad in Betracht ziehen.

Naturgemäß unterscheiden sich in **5a** auch die exocyclischen und endocyclischen NC-Abstände mehr als in der unkoordinierten Base. Zum Vergleich zieht man hier zweckmäßigerweise die aus einer Röntgenstrukturanalyse erhaltenen Daten von 1,1',3,3'-Tetramethyl-2,2'-bi-1,3,2-diazaborolidin (9) heran²³⁾. Der durchschnittliche NCH₂-Abstand beträgt dort 146.4(7), der NCH₃-Abstand 144.5(9) pm. Auch in **5a** sind die endocyclischen NC-Abstände etwas länger als die exocyclischen. Die Unterschiede der NC-Bindungslängen zwischen dem tri- und tetrakoordinierten Stickstoff betragen 5.3 (exocyclisch) bzw. 6.1 pm (endocyclisch).

Die Ringinnenwinkel im Fünfring von 5a unterscheiden sich um nahezu 10°. Erwartungsgemäß streben die Atome B und N3 der Koordinationszahl 3 (Winkelsumme jeweils 360°) die größten Winkel an. Den kleinsten Ringinnenwinkel besitzt der tetrakoordinierte Stickstoff.

Während die Diazaborolidin-Ringe in 5 und 9 weitgehend planar sind und nur durch die gleichsinnige Abwinklung der Methylgruppen die "butterfly"-Struktur erhalten¹⁷, wird durch die GaCl₃-Addition nicht nur eine erhebliche Unsymmetrie in Bindungslängen und Bindungswinkeln im Ringsystem induziert, sondern auch eine beträchtliche Konformationsänderung.

Eine Analyse der Torsions- und Interplanarwinkel lehrt, daß das dem tetraedrisch konfigurierten Stickstoff benachbarte Ring-C-Atom aus der ehemaligen Fünfringebene herausdreht. Damit wird die bei Fünfringsystemen häufige Envelope-Konformation erreicht, zumal die restlichen vier Ringatome weitgehend koplanar bleiben mit maximalen Abweichungen von 1.7 pm von der Ausgleichsebene. Konsequenz dieser Konformation ist, wie man auch Abb. 3 entnehmen kann, ein vergleichsweise kurzer H5aCl1-Kontakt mit 285.0 pm, der sich im ¹H-NMR-Spektrum deutlich äußert. Außerdem folgt aus Abb. 3, daß dem im untersuchten Kristall vorliegenden Enantiomeren R-Konfiguration zukommt.

Schlußfolgerung

Die vorliegende Untersuchung zeigt, daß Diazaborolidine einzähnige Lewis-Basen sind und mit Halogeniden des Aluminiums und Galliums stabile 1:1-Koordinationsverbindungen liefern. Eine Ausnahme bildet das Dimethylamino-Derivat 7. Sicher sind noch zahlreiche weitere Addukte dieser Art zugänglich⁴⁾, deren Stabilität darauf zurückgeht, daß das dreifach koordinierte Bor-Atom durch eine starke BN- π -Bindung elektronisch abgesättigt wird. Hinzu kommt der erhebliche elektronenabziehende Effekt des Stickstoffs vom Ammonium-Typ, der induktiv zur Verstärkung der BN- π -Bindung beiträgt. Dabei zeichnet sich aufgrund qualitativer Beobachtungen, z. B. Δ^{13} C für C6, ab, daß die Diazaborolidine basischer als die vergleichbaren Bis(dimethylamino)borane sind. Ursache hierfür ist ein Herabsetzen der in den Diazaborolidinen herrschenden Ringspannung durch Überführung eines N-Atoms vom sp²- in eines vom sp³-Typ.

Unerwartet war, daß 7 molekulare 1:2-Addukte bildet, denn Tris(dimethylamino)boran, die im Vergleich mit 7 ringoffene Form, liefert ein Salz [(CH₃)₂NB(N(CH₃)₂)₂GaCl₃]- $GaCl_4^{1)}$. Daß nun im Gegensatz zu 3-6 zwei N-Atome donoraktiv werden, ist durch die dritte Aminogruppe bedingt, die dann verstärkt zur BN-π-Bindung herangezogen wird. Durch das Einbinden von N-Atomen in das starre Diazaborolidin-System geht die "freie" Drehbarkeit um die BN-Bindungen verloren; damit kann 7 im Gegensatz zu $B[N(CH_3)_2]_3$ nicht zweizähnig wirken. Von den beiden Alternativen VII/IX wird IX realisiert, wobei vermutlich nur die meso-Form mit trans-ständigen EX₃-Gruppen gebildet wird. Der Grund dafür dürfte sein, daß durch den Übergang eines weiteren sp²-hybridisierten N-Atoms in ein sp³-hybridisiertes die Ringspannung weiter reduziert wird. Nach Modellen erfolgt hierdurch wieder eine Einebnung des Diazaborolidin-Ringes. Hinzu kommt die Verstärkung der BN-Bindung, die nur dann möglich ist, wenn sich die C_2N -Ebene der Dimethylamino-Gruppe weitgehend koplanar zur N₃B-Ebene einstellt. Dies ist aber nur bei dem Isomeren IX möglich, da wegen der tetraedrischen Konfiguration der Ring-N-Atome die Methylgruppen der (CH₃)₂N-Einheit auf Lücke stehen können.

Schließlich zeigen die hier beschriebenen Untersuchungen, daß die Lewis-Säuren nicht in der Lage sind, die Bor-Halogen-Bindung unter Bildung von Diazaborolidinium(1 +)-Kationen vom Typ 2 zu lösen. Kationen dieses Typs besitzen somit im Gegensatz zu jenen vom Typ 1 eine geringe Bildungstendenz, da der Einbau des Bors in ein Ringsystem eine lineare Ausrichtung der beiden Substituenten, die bei nichtcyclischen Systemen möglich ist, verhindert. Jedoch ist es möglich, Kationen vom Typ 2 durch Addition einer Neutralbase in Form von Bor-Kationen¹⁰⁾ der Koordinationszahl 3 zu stabilisieren²⁴⁾.

Der Deutschen Forschungsgemeinschaft gilt Dank für die Förderung der vorliegenden Untersuchung. Dank schulden wir ferner dem Fonds der Chemischen Industrie sowie der BASF Aktiengesellschaft für vielfältige Unterstützung unserer Arbeiten. Für die Ausführung zahlreicher Messungen und Analysen gilt unsere Anerkennung Frau L. Moser, Frau G. Hanatschek und Herrn K. Schönauer, für die selektiven Entkopplungsexperimente Herrn Dr. habil. B. Wrackmeyer.

Experimenteller Teil

Alle Versuche wurden unter Luft- und Feuchtigkeitsausschluß durchgeführt. Die verwendeten Diazaborolidine erhielten wir nach Literaturvorschriften²⁵⁾. – NMR-Spektren: Bruker WP 200, Varian A 60A, Varian FT 80. – IR-Spektren: Perkin-Elmer 325. – Röntgenstrukturbestimmung: Syntex R3-Diffraktometer, Strukturlösung mit dem SHELXTL-80-Programmpaket.

Darstellung der Addukte 3a - 8d: Die experimentellen Methoden sind in Lit.¹⁾ beschrieben. Tab. 4 faßt die experimentellen und analytischen Daten zusammen. **3b** mit der äquimolaren Menge Pyridin in C₆D₆ setzt 1,2,3-Trimethyl-1,3,2-diazaborolidin (3) frei, wie δ^{11} B mit 32.3 ppm zeigt.

Tab. 4. Experimentelle und a	unalyt	ische Date	ın zur Dar	stellung.	und Ch	arakterisierung der A	ddukte	3a 8d			
	Me- tho- de	Base g(mmol)	EX ₃ g(mmol)	Ausb. g (%)	Schmp. (°C)	Summenformel (Molmasse)		U	н	z	Hal
3a 1,2,3-Trimethyl-1,3,2-diazaborolidin-	A	0.56	0.87	1.53	58	C ₅ H ₁₃ BCl ₃ GaN ₂	Ber.	20.85	4.55	9.72	24.20
1-Galliumtrichlorid		(2.0)	(4.9)	(23)		(288.1)	Gef.	19.27	4.38	9.07	23.60
3b 1,2,3-Trimethyl-1,3,2-diazaborolidin-	۷	0.42	1.07	1.07	105	C ₅ H ₁₃ BBr ₃ GaN ₂	Ber.	14.25	3.11	6.65	56.88
1-Galliumtribromid		(3.8)	(3.5)	(13)		(421.4)	Gef.	13.70	3.42	6.62	61.43
3c 1,2,3-Trimethyl-1,3,2-diazaborolidin- 1-Aluminiumtrichlorid	B	1.10	1.45	1.20	56	C ₅ H ₁₃ AIBCl ₃ N ₂	Ber.	24.48 21.78	5.34	11.00	11.42
3d 1,2,3-Trimethyl-1,3,2-diazaborolidin-	V	0.38	0.92	0.66 99:0	65	CcH1,AIBBraN,	Ber.	15.86	3.46	6.6	63.30
1-Aluminiumtribromid		(3.4)	(3.5)	(52)		(378.7) 5 2	Gef.	15.31	3.58	7.17	63.20
3e 1,2,3-Trimethyl-1,3,2-diazaborolidin-	B	44.0	1.48	1.20	186	C ₅ H ₁₃ AIBI ₃ N ₂	Ber.	11.56	2.52	5.39	1
1-Aluminiumtriiodid		(3.9)	(3.6)	<u>(</u>		(519.7)	Gef.	12.16	3.59	5.41	I
4a 1,3-Dimethyl-2-phenyl-1,3,2-diazaborolidin-	¥	1.02	0.80	1.09	87	C ₁₀ H ₁₅ BCl ₃ GaN ₂	Ber.	34.30	4.32	8.00	19.91
1-Galliumtrichlorid		(5.9)	(4.6)	(68)		(350.1)	Gef.	32.78	4.41	8.00	18.54
5a 2-Chlor-1, 3-dimethyl-1, 3, 2-diazaborolidin-	V	0.99	1.31	1.92	80	C4H10BCl4GaN2	Ber.	15.57	3.27	9.08	45.97
1-Galliumtrichlorid		(7.5)	(7.5)	(83)		(308.5)	Gef.	15.82	3.53	8.71	46.12
5b 2-Chlor-1, 3-dimethyl-1, 3, 2-diazaborolidin-	V	0.66	1.33	1.67	75	C4H10AIBBr3CIN2	Ber.	12.04	2.53	7.02	1
1-Aluminiumtribromid		(2.0)	(2.0)	(85)	i	(399.1)	Gef.	12.13	3.16	7.07	I
6a 2-Brom-1, 3-dimethyl-1, 3, 2-diazaborolidin-	۷	1.82	2.71	3.81	11	C ₄ H ₁₀ AIBBr ₄ N ₂	Ber.	10.83	2.27	6.32	72.06
1-Aluminiumtribromid		(10.3)	(10.1)	(85)		(443.6)	Gef.	8.42	2.20	4.62	74.24
7a 2-(Dimethylamino)-1, 3-dimethyl-1, 3, 2-	V	0.62	0.68	0.89	65	C ₆ H ₁₆ BCl ₃ GaN ₃	Ber.	22.73	5.09	13.25	33.54
diazaborolidin-1-Galliumtrichlorid		(4.4)	(3.9)	(22)	:	(317.1)	Gef.	18.92	4.82	11.10	30.90
7 b 2 -(Dimethylamino)-1, 3-dimethyl-1, 3, 2-	4	0.43	0.89	0.75	82	C ₆ H ₁₆ BBr ₃ GaN ₃	Ber.	16.00	3.58	9.33	53.22
alazaboroligin-1-Galilumtribromid	•	(3.1)	(7.7)	(96)	2		5.0	19.01	96.5	9.02	04.80 08.80
diazahorolidin-1-Aluminiumtrihromid	C	1 1 2 2 2 2 2	19.0	(85)	5	C6H16AIDDF3N3		17.17	06.6	10.01	51.50 51.57
8a 2-(Dimethylamino)-1.3-dimethyl-1.3.2-	₹	0.68	1.76	1.86	65	C.H., BCLGa,N,	Ber	14.61	3.27	8.52	43.13
diazaborolidin-1, 3-Bis(galliumtrichlorid)		(4.8)	(10.0)	(18)		(493.2)	Gef.	14.46	3.29	8.41	41.84
8b 2-(Dimethylamino)-1, 3-dimethyl-1, 3, 2-	۲	0.43	1.99	1.63	82	C,H,,BBr,Ga,N,	Ber.	9.48	2.12	5.53	63.05
diazaborolidin-1, 3-Bis(galliumtribromid)		(3.4)	(6.4)	(02)		(759.9) ² 2	Gef.	9.57	2.45	5.39	58.72
8c 2-(Dimethylamino)-1,3-dimethyl-1,3,2-	B	0.49	0.46	0.31	71	C ₆ H ₁₆ Al ₂ BCl ₆ N ₃	Ber.	17.68	3.96	10.31	52.17
diazaborolidin-1,3-Bis(aluminiumtrichlorid)		(3.5)	(3.5)	4		(407.7)	Gef.	13.75	5.54	8.24	56.55
8d 2-(Dimethylamino)-1,3-dimethyl-1,3,2-	A	0.42	1.81	1.92	124	C ₆ H ₁₆ Al ₂ BBr ₆ N ₃	Ber.	10.69	2.39	6.23	I
diazaborolidin-1,3-Bis(aluminiumtribromid)		(3.0)	(6.8)	(96)		(674.4)	Gef.	10.39	3.06	5.91	i

Halogenaustausch in 5b: Bei Raumtemp. waren nach 24 h folgende 27 Al-NMR-Signale beobachtbar: AlBr₃: 81.6 ppm, $5 \cdot$ AlBr₃: 102.8 ppm, $6 \cdot$ AlBr₂Cl: 106.2 ppm; Intensitätsverhältnis 1:3:6.

Berechnete δ^{1} H-Werte, Kopplungskonstanten und berechnete Torsionswinkel in **5a**⁵): H5a 824.960 Hz, ²J(H5a, H5b) = 11.370 Hz, ³J(H5b, H4b) = 10.221 Hz H5b 629.757 Hz, ³J(H5a, H4a) = 1.754 Hz, ²J(H4a, H4b) = 9.168 Hz H4a 669.427 Hz, ³J(H5a, H4b) = 7.176 Hz H4b 716.684 Hz, ³J(H5b, H4a) = 9.530 Hz

Für ³J gilt⁶: ³J = C - Acos Φ + Bcos 2 Φ mit Φ = arc cos $\pm [(B + {}^{3}J - C)/2B + (A2/162B_{2}) + A/4B]^{1/2}$

Mit A = 0.5, B = 4.5 und C = 4.22 wurden als sinnvolle Lösungen für ${}^{3}J = 9.2$ Hz die in Abb. 2 aufgeführten Torsionswinkel $\Phi 1 = 59.76^{\circ}$ für ${}^{3}J(H5a, H4a)$ und $\Phi 2 = 20.21^{\circ}$ für ${}^{3}J(H5a, H4b)$ erhalten.

Röntgenstrukturanalyse: Ein Einkristall von 5a (0.35 × 0.5 × 0.15 mm) wurde unter Argon in einer Lindemann-Kapillare montiert und abgeschmolzen. – Kristalldaten: C₄H₁₀BCl₄GaN₂, M = 308.48, monoklin, a = 7.244(3), b = 12.967(6), c = 12.652(3) Å, $\beta = 95.36(2)^{\circ}$, V =1183.3(1) Å³ (Kleinste-Quadrate-Verfeinerung der Diffraktometerwinkel von 25 automatisch zentrierten Reflexen), $\lambda = 0.71069$ Å, graphitmonochromatisierte Mo-K_a-Strahlung, Raumgruppe $P2_1/c$ (No. 14), Z = 4, $d_{exp.}$ 1.70, $d_r = 1.73$, μ (Mo-K_a) = 31.8 cm⁻¹. – Datensammlung: $\omega/2\Theta$ -Methode mit Meßbreite = 1° + 0.35 tang Θ ; ω -Scangeschwindigkeit 1.20–29.3°/ min (150–2500 counts/s), 2048 gemessene Reflexe (2 < 2 Θ < 48°), davon 1857 mit $I > 3\sigma(I)$; keine Absorptionskorrektur; 2 Kontrollmessungen nach je 48 Messungen; keine signifikante Intensitätsänderung. – Strukturanalyse und Verfeinerung: Direkte Methoden lieferten die Lage des Ga-Atoms, die anschließende Differenz-Fourier-Synthese die von drei Cl-Atomen. Nach Verfeinerung mit isotropen Temperaturfaktoren (R = 0.12) waren alle übrigen Nichtwasserstoffatome lokalisierbar. Die weitere Verfeinerung mit schrittweise eingeführten anisotropen Temperaturfaktoren schloß bei R = 0.053 ab. Da die Lagen der H-Atome nur angenähert zu erkennen waren,

_	x/a	y/b	z/c	U ₁₁	U 22	^U 33	U 2 3	U 12	^U 13
Ga.	. 15484(6)	.09111(3)	. 30 17 1(3)	5.57(3)	4.52(2)	4.42(2)	17 (2)	.01(2)	05(2)
cıı .	29512(18)	.12816(9)	.45414(9)	10.50(9)	8.48(9)	5,36(6)	-1.32(6)	-1.51(6)	75(7)
C12.	28265(16)	.15999(8)	.17230(9)	9.88(9)	5.75(7)	6.24(7)	.81(6)	2.02(6)	.80(6)
c13.	86247(16)	.12401(9)	.29579(11)	6.17(7)	7.34(8)	10.98(10)	-1.20(7)	.77(7)	1.24(6)
c14 .	92287(15)	.89793(10)	.10966(10)	5.80(7)	9.23(9)	9,18(8)	-1.59(7)	-1.78(6)	60(7)
в.	14592(61)	.90450(33)	. 17 27 8(34)	5.51(27)	3.51(22)	5.16(25)	20(22)	.03(22)	49(23)
N1 .	18493(39)	. 937 19(22)	. 287 30 (22)	4.95(19)	4.57(18)	4.80(18)	.48(14)	. 39(15)	. 11(14)
N3.	30582(43)	.88545(22)	.12846(25)	5.82(21)	4.61(21)	6.15(21)	12(16)	1.17(17)	.78(15)
C4.	38644(60)	.90590(35)	. 310 31 (36)	7.54(28)	6.91(29)	7.97(31)	.07(27)	-2.01(24)	1.80(26)
C5.	46439(55)	.90279(37)	. 20463(40)	5.25(27)	7.02(31)	11.38(40)	. 87 (26)	.92(26)	1.87(24)
C6.	06309(81)	. 887 15 (36)	. 36 194 (39)	12.15(49)	5.75(33)	6.72(33)	. 90 (25)	2,94(30)	51(29)
c7.	33471(107)	.85829(50)	.01959(44)	14.27(55)	9.75(44)	7.51(37)	- 1. 35 (32)	4.62(42)	2.56(42)

Tab. 5. Ortsparameter²⁶⁾ und Parameter der anisotropen Temperaturfaktoren $(U_{ij} \times 10^2)$ von **5a**, Standardabweichungen in Klammern. Die Temperaturfaktoren haben die Form von $\exp[-2\pi^2(h^2a^{*2}U_{11} + \ldots + 2klb^{*}c^{*}U_{23} + \ldots)]$

wurden ihre Positionen rechnerisch erzeugt und CH₃ als starre Gruppen (CH-Abstand 98 pm) bzw. die CH₂-Gruppen nach dem riding model verfeinert. Das Gewichtsschema wurde mit $w = 1/(\sigma^2 F_0 + 0.0003 F_0^2)$ eingeführt. Endwerte waren R = 0.047 und $R_w = 0.033$ mit 95 Parametern in der abschließenden Verfeinerung. Tab. 5 enthält die Ortsparameter und Parameter der Temperaturfaktoren.

- ¹⁾ 134. Mitteil.: K. Anton, P. Konrad und H. Nöth, Chem. Ber. 117, 863 (1984).
- ²⁾ H. Nöth, R. Staudigl und H.-U. Wagner, Inorg. Chem. 21, 706 (1982).
- 3) J. Higashi, A. D. Eastman und R. W. Parry, Inorg. Chem. 21, 716 (1982).
- 4) Wir beobachteten keine Reaktion zwischen 3 und HgCl₂ oder InBr₃, wohl aber zwischen 3 und TaCl₅ sowie zwischen 5 und TiCl₄, SbCl₅ und NbCl₅. 5 reagierte hingegen nicht mit FeCl₃ (vgl. K. Anton, Dissertation, Univ. München 1982). Soweit Reaktion stattfand, konnten die Produkte bisher noch nicht sicher charakterisiert werden.
- 5) Die Simulation erfolgte mit dem Programm PANIC VERSION 90813 am Bruker WP 200-Aspect-2000-Rechner.
- ⁶⁾ H. Günther, NMR-Spektroskopie, S. 133 ff., Georg Thieme Verlag, Stuttgart 1973.
- ⁷⁾ J. P. Albrand, A. Cogne, D. Gagnaire und J. B. Robert, Tetrahedron 28, 819 (1972).
- ⁸⁾ N. N. Greenwood, T. S. Srivasta und B. P. Straughan, J. Chem. Soc. A 1966, 699.
- 9) G. Beran, A. J. Carty, H. A. Patel und G. J. Palnik, J. Chem. Soc. D 1970, 222; N. N. Greenwood und A. Storr, J. Chem. Soc. 1965, 3426.
- 10) E. Allenstein, V. Beyl und K. Löhmer, Z. Anorg. Allg. Chem. 381, 40 (1971).
- ¹¹⁾ E. v. Wartenberg und J. Goubeau, Z. Anorg. Allg. Chem. 329, 269 (1964); L. Lewis, J. R. Miller, R. L. Richards und A. Thompson, J. Chem. Soc. 1965, 5850; R. Staudigl, Dissertation, Univ. München 1981.
- 12) J. R. McDivitt und G. L. Humphrey, Spectrochim. Acta, Part A 30, 1021 (1974).
- ¹³⁾ K. Anton und H. Nöth, Chem. Ber. 115, 2668 (1982).
- 14) J. Sinclair, R. W. H. Small und I. J. Worrell, Acta Crystallogr., Sect. B 37, 1290 (1981).
- ¹⁵⁾ G. Garton und H. M. Powell, J. Inorg. Nucl. Chem. 4, 84 (1957).
- ¹⁶⁾ R. W. H. Small und I. J. Worrell, Acta Crystallogr., Sect. B 38, 86 (1982).
- ¹⁷⁾ H. M. Seip, R. Seip und K. Niedenzu, J. Mol. Struct. 17, 361 (1973).
- ¹⁸⁾ M. F. Lappert, P. P. Power, A. R. Sanger und R. C. Scrivastava, Metal and Metalloid Amides, Kapitel 4, Ellis Horwood Publishers, Chichester, U. K., 1980.
- 19) P. H. Clippard, J. C. Hanson und R. C. Taylor, J. Cryst. Mol. Struct. 1, M 363 (1971).
- ²⁰⁾ F. Zettler und H. Hess, Chem. Ber. 108, 2269 (1975).
- ²¹⁾ M. L. Ziegler, K. Weidenhammer, K. Autenrieth und H. Friebolin, Z. Naturforsch., Teil B 33, 200 (1978).
- ²²⁾ J. E. Hubery, Inorg. Chemistry, S. 184, Harper & Row Publishers, New York 1972.
- ²³⁾ H. Fußstetter, J. C. Huffman, H. Nöth und R. Schaeffer, Z. Naturforsch., Teil B 31, 1441 (1976).
- ²⁴⁾ H. Nöth, C. K. Narula und S. Weber, unveröffentlichte Ergebnisse, vgl. S. Weber, Diplomarbeit, Univ. München 1981.
- ²⁵⁾ T. T. Wang, P. J. Busse und K. Niedenzu, Inorg. Chem. 9, 2150 (1970); K. Niedenzu, H. Beyer und J. W. Dawson, ebenda 1, 738 (1962).
- ²⁶⁾ Positionen der H-Atome und ihre U-Werte sowie weitere Unterlagen zur Kristallstrukturbestimmung sind unter Angabe der Autoren, des Titels und des Zeitschriftenzitats unter CSD 50510 beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, abrufbar.

[199/83]